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Abstract:  The ISO/IEC Standard TR 18037 defines the syntax and semantics for fixed-
point operations for programming embedded hardware in C. However, there 
are currently only few compilers available that support this standard. 
Therefore, we have implemented a stand-alone library according to the 
standard that can be compiled with standard C compilers. The library is 
available as open source and written in plain C, thus can be used in various 
target architectures as long as a C compiler is available. This book chapter  
presents a brief description of the ISO/IEC standard and the library 
implementation followed by an evaluation of code size and performance of the 
fixed-point operations on the Atmel AVR architecture. A comparison with the 
standard floating-point library (which is machine code-optimized to the target 
architecture) shows that simple fixed-point functions such as addition, 
subtraction and multiplication are more efficient, while more complicate 
functions can only compete in the worst case behavior. The fixed-point 
approach provides a smaller memory foot print, for typical applications where 
only a small subset of functions is used. This is especially of interest for the 
big market of embedded microcontrollers with only a few Kbytes of program 
memory. 
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1. INTRODUCTION 

The C language standard1 specifies two data types for expressing 
fractional numbers, the float and the double data type. Both data types are in 
a floating-point format consisting of sign, exponent and mantissa according 
to the IEEE Standard for Binary Floating-Point Arithmetic (IEEE 754)2. 

Since the regular integration of the floating-point coprocessor in the 
processors for personal computers (in the x86 world, this became reality 
when the 486DX replaced the 486SX in 1992), floating-point arithmetic was 
available with high performance and became a ubiquitous feature for 
computer programs. 

On systems without a dedicated hardware module for floating-point 
operations, these have to be emulated by a series of integer operations in 
software. This is typically the case for embedded microcontrollers, which in 
most cases do not come with a floating-point module since die size and, 
therefore, the cost of a microcontroller is strongly increased when a floating-
point unit has to be added in hardware. Also, many embedded applications 
do well without hardware floating-point support. The NIOS II soft core 
processor3, for instance, requires around 700 Logic Elements when 
synthesized as a 32 bit integer processor onto an FPGA (Field-
Programmable Gate Array). When adding a floating-point unit, the final 
design requires around thrice the size of the plain integer design. 

Without compiler support, a programmer either has to code the 
operations manually, use one of the many libraries available for fixed-point 
operations or use tools like Matlab4 that are able to generate C code that 
simulates fixed-point arithmetic. 

Existing solutions for fixed-point libraries suffer from one of the 
following deficiencies: (i) the data types are not standardized, thus it is not 
possible to reuse code with a different library, (ii) not all required functions 
are supported, e. g., missing support for trigonometric functions, (iii) if the 
library is rather complete, the overhead on linking the library to the final 
program creates a large memory footprint, and (iv) the library is not written 
in C but in C++ or an architecture-specific assembly language. 

Unfortunately, until recently, there was not much compiler support for 
fixed-point data types and no standard for implementing fixed-point data 
types. In 2008, ISO issued a standard that is describing the syntax and the 
data types for fixed-point arithmetic as an extension to the programming 
language C5. However, for particular embedded target systems there is still a 
lack of compilers that support this standard. Therefore, we have 
implemented the data types and functions of this standard as a software 
library that can be used with any standard C compiler. 
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It is the purpose of this chapter to describe a high-level language 

implementation of the main parts of the ISO/IEC Standard TR 18037 and 
evaluate the results by comparison to the standard software floating-point 
library of the avr-gcc compiler, a compiler for the embedded AVR 8-bit 
microcontroller series. Our intention is to provide a very generic 
implementation that can act as a transitional solution for systems where 
compiler support for the new standard is not yet available as well as a 
solution for applications with moderate performance requirements. 
Moreover, the timing behavior of the functions in our library has been 
thoroughly analyzed on the AVR architecture so that these data supports 
static Worst Case Execution Time analysis methods6 for real-time systems 
on that hardware. 

The rest of the chapter is structured as follows: 
Section 2 reviews some basic properties of fixed-point and floating-point 

arithmetic. Section 3 gives a short introduction to the ISO/IEC 18037 
standard. Section 4 describes our implementation of a library. Section 5 
depicts the evaluation results for our library on the AVR architecture. 
Section 6 compares the results to floating-point operation. Section 7 
concludes the chapter. 

2. A CLOSER LOOK ON FIXED-POINT 
ARITHMETICS 

Most programming languages offer only floating-point arithmetic in 
order to express fractional numbers. Being noticeable exceptions, ADA and 
COBOL are one of a few programming languages that also natively support 
fixed-point data types. The reason for this is that floating-point arithmetic 
comes with the following advantages over fixed-point numbers: 
• They approximate real numbers over a relatively wide data range. For 

example, the float data type in C allows to express numbers between 
1.175·10-38 and 3.403·1038. The double data type even supports numbers 
between 2.225·10-308 and 1.798·10308. 

• They provide, except for special situations, like for example very small 
numbers near zero, a constant relative precision for approximating a real 
number. The float data type has a precision of 2-24 = 5.960·10-8, the 
double data type has a precision of 2-53 = 1.110·10-16. 

• The number format is standardized by IEEE Standard for Binary 
Floating-Point Arithmetic (IEEE 754) to four different precisions: single, 
double, single-extended, and double-extended. Typically, programming 
languages and most floating-point hardware support single and double 
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precision7. There exists another standard, IEEE 8548 that also supports 
specifying floating-point numbers on the basis 10, which is aligned to 
representation of numbers by humans. However, unlike IEEE 754, IEEE 
854 does not specify how a binary format of a number should look like so 
that is less applicable in computer programming. 
Therefore, most applications will do well in using floating-point 

numbers. However, there are some points in favor of fixed-point numbers: 
• Operations on fixed-point numbers are less complicated than floating-

point numbers. This argument is especially of weight, if the target 
hardware has no special support for floating-point calculations, which is 
often the case for embedded hardware. Therefore, using fixed-point 
arithmetic can yield a performance benefit. 

• When the numbers to be operated with are in an a priori known order of 
magnitude, a fixed-point data type that has the radix in an appropriate 
position can store a number more efficiently than the floating-point data 
type, since the latter has also to store the flexible exponent. Again, this is 
an issue for embedded systems with a limited amount of RAM memory. 

• Due to the reduced complexity of the fixed-point operations, the resulting 
code size is by a few kbytes smaller when using fixed-point instead of 
floating-point numbers. Accordingly to the previous argument, this is an 
issue for embedded systems with a limited amount of program memory. 
If an application requires floating-point arithmetic or does better with 

fixed-point depends mainly on the data set the application has to deal with. 
Frantz and Simar9 discuss this on the example of video and audio 
processing: While discrete cosine transformations and quantization 
operations as they appear in video signal processing can be effectively 
handled using integer operations while audio processing typically uses 
cascaded filters where each filtering state propagates the error of previous 
stages. Furthermore, audio signals must retain accuracy even if the signal 
approaches zero due to the sensitivity of the human ear, which makes audio 
applications less suitable for fixed-point arithmetic. 

 
Therefore, the employment of fixed-point arithmetic can be advantageous 

for some embedded applications where fractional numbers are required, but 
floating-point operations would be too expensive in terms of hardware cost 
or processing time. 
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3. FLOATING-POINT EXTENSIONS ACCORDING 

TO ISO/IEC TR 18037:2008 

Because fixed-point operations are commonly used for microcontrollers, 
the ISO/IEC has summarized some guidelines and suggestions in a technical 
report named ”Extensions for the programming language C to support 
embedded processors”5, which defines some guidelines for including fixed-
point data type support into C compilers. This includes data types, #pragma 
directives, constants, function names, and some mathematical conventions. 

Although the standard is intended to describe fixed-point extensions for 
C compilers, we have decided to use those guidelines for the implementation 
of an external C library. 

Having the real time and code size limitations in mind, we decided to 
implement a reasonable subset of the data types defined by the standard. The 
overall set of data types and the implemented types are shown in Table 1. 
The numbers indicate the bits that are available for representing the integer 
part and the fractional part. Note that the definition of our implementation 
exceeds the number of specified bits, which is still in conformance with the 
standard, since the given values specify the minimum number of bits for the 
data types. 

Table 16-1. Fractional data types according to ISO/IEC TR 18037 
ISO/IEC Definition Implemented 

signed short _Fract s.7  
signed _Fract s.15  
signed long _Fract s.23  
signed short _Accum s4.7        _sAccum s7.8
signed _Accum s4.15        _Accum s15.16
signed long _Accum s4.23        _lAccum s7.24

 
FX_ACCUM_OVERFLOW defines the overflow behavior of the Accum 

data types. When set to SAT, saturation is enabled; this means that when an 
overflow occurs, the result is either the minimal or the maximal possible 
value of the data type. This behavior often means a significant loss of speed 
and further increases code size, so the #pragma is normally set to 
DEFAULT, which is the other possible value. Since we cannot implement 
#pragmas in a library, this behavior can be set with a #define 
FX_ACCUM_OVERFLOW before the library header file is included. 

FX_FRACT_OVERFLOW is the same for the Fract data types. Since we 
have none of them implemented, this #pragma is not used in our library. 

FX_FULL_PRECISION forces the implementation to gain maximum 
precision, by allowing a maximum error of one ULP (Unit in the Last Place) 
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of the result. However, for particular problems, a precision of 2 ULPs on 
multiplication and division operations is sufficient, which enables 
optimizations towards execution speed and code size. For our 
implementation the FX_FULL_PRECISION switch is not implemented, 
instead the precision has been predicted separately for each function. 

Almost any meaningful data type handling and some low level arithmetic 
functions are defined through naming conventions and behavior descriptions. 
There is one version for each data type respectively several for conversion 
and mixed type functions. Except for their parameters they differ also by 
some trailing and/or leading characters which describe the type of the 
parameters respectively the result.  

4. LIBRARY IMPLEMENTATION 

The primary goal of this work was to provide a fixed-point library 
especially for use with Atmel 8 bit processors in combination with real time 
applications. So, performance and performance predictability were strong 
requirements for the design. Also flash memory was very limited, therefore 
small code size was desired. 

To optimize code for size and speed, every function was implemented as 
accurate as possible, trying to keep it mathematically fast and simple (thus 
reducing code size). Apart from optimizing the overall code size of the 
library, each function has been compiled into a separated object file that is 
only linked to the final program if the function was used. 

A main decision that was made refers to the data types. The ISO/IEC 
paper recommends both the _Fract and the _Accum type. The difference 
between those two types is only the lack of integral bits in the _Fract type 
while not increasing the number of fractional bits, so we decided to 
implement the _Accum type. To further limit the complexity of the 
implementation, we only implemented two subtypes of the _Accum type. 
Although the two data types should be named _Accum and long _Accum, 
there is a problem with the name of the second type. As we use typedef to 
define the type, the name of the data type must not have blanks in it. So we 
decided to call it _lAccum, which should be kept in mind when comparing 
AVRfix with the ISO/IEC specification. 

Both types are signed and held in a 32 bit container (signed long). While 
_Accum has 15 integral and 16 fractional bits, _lAccum has only 7 integral 
bits but therefore 24 fractional bits. Because we use the long data type as 
container, addition and subtraction are working implicitly by using integer 
arithmetic as long as _Accum and _lAccum are not mixed. Therefore, 
addition and subtraction require no additional function in the library. 
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Overloading of operators is not supported in ANSI-C, so for example a 

multiplication needs to be done by a function call or a macro. While function 
calls produce some overhead on runtime, the use of macros increases code 
size. Most operations except conversion functions are implemented as 
functions. Comparison functions are working as long as the data types are 
the same; casting has no effect for _Accum and _lAccum. If a comparison 
between a long and an _Accum is needed, one (or both) of the variables 
needs to be converted before the comparison can be done. The same 
approach is needed for assignments. 

To meet requirements of code size and execution speed, the 
FX_FULL_PRECISION switch has not been implemented. Instead, the 
expected precision has been evaluated and documented separately for each 
function in the project documentation10. This evaluation includes also 
sophisticated math functions such as trigonometric functions and square 
root. The library is completely written in C and has been tested and 
evaluated with the established compilers avr-gcc 3.3.2 and the Microsoft 
Visual Studio IDE 6.0. 

In reference to the ISO/IEC report, the naming conventions are used 
accordingly whenever possible, meaning that for _Accum a k, for _lAccum 
lk and for _sAccum sk is used as suffix to the function name to indicate the 
type of the parameters. The type of the return value is indicated by a letter 
before the function name. No letter suggests _Accum, an l means that the 
return value is of type _lAccum, and an s refers to _sAccum. 

For example, the multiplication function that multiplies two _Accum 
values and returns an _Accum value, is named mulk. The multiplication 
function that multiplies two _lAccum values and returns an _lAccum value, 
is named lmullk. 

Furthermore, the ISO/IEC paper specifies the 
FX_ACCUM_OVERFLOW flag, which defines the behavior if an overflow 
occurs. If it is set to saturation (SAT), the value will be either the maximum 
or minimum possible value if an overflow occurs. By default, an overflow 
will give an undefined result. While in the ISO/IEC paper this flag is defined 
as a #pragma directive, we needed to use a #define for the 
FX_ACCUM_OVERFLOW flag. Independent from this flag the behavior 
can be achieved by calling the respective version of the function directly. If a 
function provides both behaviors, there exist two functions which have either 
S for saturation or D for default behavior as trailing character after the 
function name. So one can attach an S to a function name to force saturation 
behavior or a D to force the default behavior (resulting in e.g. mulkD or 
mulkS for the two versions of mulk) if the function provides two different 
behaviors. 
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Apart from the four arithmetic basic operations, the library support also 
operations such as square root, logarithmic and trigonometric functions. For 
the latter we have decided to use the CORDIC approximation11 instead of a 
Taylor series, because it saves considerable program memory when 
requiring sine and cosine (or, consequently, tangens) in the same program 
while achieving almost the performance of the Taylor version. 

5. EVALUATION 

For tests and benchmarks we used an evaluation board equipped with an 
Atmel ATMEGA 16, providing 16 MHz clock, 16 Kb flash memory and 2 
Kb SRAM. For evaluating the correctness of the calculations done by the 
library, we tried to cover all meaningful calculations. To speed up this brute 
force approach, we mainly did this on a PC and compared the result with 
either results from 64 bit integer calculations or precalculated reference 
results. The reference results have been created with the statistical 
computing environment R for a meaningful range. For example, the 
meaningful range for sine and cosine is from zero to two times Pi, meaning 
for an _Accum parameter, that 411774 calculations and comparisons had to 
be done. For functions that have no fixed execution time, the execution time 
over parameter is recorded and visualized via gnuplot. 

5.1 Evaluation on the Microcontroller 

To measure execution time and verify the calculation results, we wrote a 
small microcontroller program. To measure execution speed, we use the 16 
bit timer. The counter is reset to zero, the function is called and the counter 
value is fetched afterwards. The execution time, parameters and result is then 
transmitted via UART. To speed up transmission, a high bit rate is used and 
the data is sent binary, so a conversion was needed to plot the data in 
gnuplot. 

5.2 Accuracy Test 

To test the accuracy of the implemented functions, we compared the 
output values with precise 64-bit calculations for the _Accum and _lAccum 
data type (respectively with precise 64-bit calculations for the _sAccum data 
type) for addition/subtraction, multiplication and division. For higher 
mathematical operation pre-calculated reference values have been used. The 
accuracy test was done on a PC as we use regular C code and the execution 
is much faster as on the microcontroller. We assumed equality of the output 
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after some calculations done on both, the PC and the microcontroller. The 
established Microsoft Visual C++ 98 environment was used as the reference 
compiler.  

5.2.1 Multiplication and Division 

To test multiplication and division, we simply treated the _Accum and 
_lAccum values as signed 64-bit integer values, repeated the calculations 
with 64-bit accuracy and compared the results. Testing has been done 
completely for the _sAccum type. For the other data types, extensive testing 
including the critical value pairs has been performed. 

For a multiplication x · y, all values |x| > (2^i+f - 1) · 2-f / y will lead to an 
overflow for y > 1, with i being the number of integral bits an f being the 
number of fractional bits of the data type. For a division x/y, all values  
x > (2i+f - 1) · 2-f · y will lead to an overflow. According to the data type, this 
is only a limitation for x if y < 1.  

Extensive testing of the functions showed the following results: 
• The _sAccum functions have a maximum error of 0 for multiplication 

and division, both tested with default and saturation behavior. 
• The _Accum functions have a maximum error of 2-16 for multiplication 

and well-defined division calculations, both tested with default and 
saturation behavior. 

• The _lAccum functions have a maximum error of 2-24 for multiplication 
and well-defined division calculations with default behavior. For 
saturation behavior, the maximum error was 2-23. 

5.2.2 Extended and Trigonometric Functions 

For extended and trigonometric functions (e.g. sine/cosine, logarithm 
etc.), the comparison values were provided by R from the R Foundation, a 
statistical calculation environment. Most sophisticated functions have an 
error behavior that strongly depends on the input. Thus regarding the error 
over the whole input range makes sense. For example, Figure 1 depicts the 
error function for the _Accum square root function. An exhaustive 
evaluation of all functions can be found in the project documentation10. 
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Figure 16-1. Accuracy distribution for sqrk 

5.3 Performance Testing 

Our first attempt to test performance of our implementation was to use 
the destination device, an Atmel ATMEGA 16, but as its maximum speed is 
16 MHz and the serial port is a very slow transmission system, we decided to 
go a different way. We implemented a very simple simulator to test the 
performance on a PC. 

5.3.1 The Disassembler & Simulator Creator (DsimC 

The Disassembler & Simulator Creator (DsimC) is a little Java 
Application that disassembles an .srec-file for an Atmel ATMEGA16 and 
transforms each instruction into a piece of C code. This code can be 
compiled and executed on a PC instead of downloading and executing the 
original code on the microcontroller. 

This was possible, because the ATMEGA16 has no caches or other 
elements that make code execution times indeterministic, but only a two-
stage pipeline with very low effect on execution time. So each hardware 
instruction is expanded to a group of C code instructions which performs an 
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equivalent operation, maintains the virtual status register flags and 
increments a tick counter which furthermore can be used to determine the 
performance of the library functions. In addition, every write to the UART 
Data Register (UDR) results in a file output operation, which gives us a very 
high speedup. As assumed, the maintenance of the status register flags 
turned out to be most expensive, resulting in a simulation speed of only 
about 25 to 30 times faster than on the ATMEGA16 when using a Pentium-
M with 2 GHz. This seems to be a good speedup, but most of it comes from 
the serial port implementation. 

When we compared the performance values calculated by our 
simulations with values we determined on the microcontroller, we noticed a 
slight drift. It turned out that the simulator counts too many ticks under 
certain conditions, resulting in a few ticks more per function call, if ever. But 
when we tried to isolate the operations causing this drift, it turned out to be 
very tricky because of lack of an in-circuit debugger for the microcontroller 
we would have to flash the target many times to reduce the code range in 
which the drift appears. In our analysis we have noticed that the drift is only 
in one direction, if ever. Fortunately, the simulator never gives fewer ticks 
than it would take on the microcontroller, so this is sufficient to get 
guaranteed worst case execution time values. However, by taking the 
discrepancies between simulator and real hardware into account, tighter 
WCET values would be possible. 

 

6. COMPARISON 

 
The traditional way for fractional computing is the usage of floating-

point operations, for which a various number of libraries exist. We compared 
our fixed-point library with the floating-point library (libm) that comes with 
the avr-gcc bundle. 

 

6.1 Accuracy 

All data types compared here (float, double, _Accum and _lAccum) 
reside in a 32-bit container. But the floating-point data types have to separate 
the container for exponent and mantissa, while the fixed-point data types 
have the whole container for the sign bit, the integral bits and the fractional 
bits. So, within the fixed-point range (231-1) · 2-16 and (231-1) · 2-24, 
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respectively, the _Accum and _lAccum types are more accurate as long as 
the value to be expressed matches the fixed-point range in its order of 
magnitude. The _sAccum data type has clearly a lower accuracy than the 
floating-point data types since it resides in a 16-bit container only. 

6.2 Addition and Subtraction 

The fixed-point addition and subtraction operations use the same 
instructions as normal integer operations, so they really make the cut over 
floating-point addition and subtraction (as shown in Table 2). 

Table 16-2. Performance comparison for addition operations 
Data type Execution time in ticks 
double 74 to 80 
_sAccum 14 
_Accum and _lAccum 23 

6.3 Multiplication 

Compared to the multiplication functions mulkD, mulkS, lmullkD and 
lmullkS the average performance of the double operation is higher, while the 
WCET of the fixed-point multiplication functions is better. This is due to the 
fact that the double data type is only implemented in 32 bit by the avr-gcc, 
thus a double multiplication involves a 23 bit multiplication of the mantissa 
and an addition of the exponent. In addition, the floating-point library has 
been optimized at assembly code level for average performance, which 
explains the results. 

Table 16-3. Performance comparison of multiplication operations 
 Execution time in ticks 
Data type Default Saturated 
double 53 to 2851 - 
_sAccum 79 to 82 92 to 95 
_Accum 337 to 350 215 to 359 
_lAccum 594 to 596 198 to 742 

6.4 Division 

Compared to the division functions divkD, divkS, ldivlkD and ldivlkS the 
minimum, average and maximum performance of the double operation is in 
general better, which can be seen in the overview given in Table 4. As a 
consequence, if possible, fixed-point divisions should be avoided for 
performance reasons. 
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Table 16-4. Performance comparison of division operations 
 Execution time in ticks 
Data type Default Saturated 
double 66 to 1385 - 
_sAccum 634 to 711 650 to 727 
_Accum 820 to 1291 853 to 1386 
_lAccum 876 to 1405 862 to 1416 

6.5 Floating-point Code Size 

We have measured the code size for using the floating-point functions 
provided by the compiler. Using a simple addition, for example adds about 
1740 bytes in code size. To cover the basic arithmetic operations about 3k of 
Flash ROM are needed. In contrast, when using AVRFix and the datatype 
_Accum with default behavior, only 758 bytes are needed. For _lAccum 848 
bytes and for _sAccum only 260 bytes are needed. Thus, AVRFix has a clear 
advantage in code size compared to floating-point operations. 

7. CONCLUSION 

The contributions in this chapter are the implementation and evaluation 
of a generic fixed-point library based on the ISO/IEC Standard TR 18037. 
The documentation10 and the source code is available as open source. 

The fixed-point library contains not only basic mathematical functions 
and conversions but also more sophisticated operations such as square root, 
logarithmic and trigonometric functions. The linking model allows having 
only the used functions in the final assembler code, which saves 
considerable program memory over monolithic libraries. 

We have performed exact performance measurements for a specific 
target architecture, the Atmel AVR with avr-gcc compiler. The results from 
this analysis can be used for static WCET analysis and optimization of 
execution time and code size, which is of special interest for embedded 
application on low-cost microcontrollers with few resources. 

Addition and subtraction are generally by a factor of 3 to 5 faster than 
floating-point operations. The fixed-point multiplication and division have 
worse average performance, but a better WCET than the floating-point 
operations for most data types. Moreover, since the library has been written 
in C, there is also room for hardware-specific optimizations of the library, 
e.g., by using inline assembler functions for time-critical parts. Regarding 
code size the fixed-point operations are clearly in favor. 
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If only addition, subtraction and multiplication is needed or a small data 
type like _sAccum is sufficient, the use of fixed-point operations can clearly 
be favored from the viewpoints of speed, WCET, and code size. 
Sophisticated functions like trigonometric and exponential functions are 
slower than the fixed-point versions, but require less program memory, 
which makes the fixed-point implementation attractive for projects on small 
embedded microcontrollers where program memory becomes the main 
limiting factor. The optional saturation behavior is a nice feature which 
cannot easily be reproduced by floating-point calculations and small code 
size may be a decisive advantage. 

In the future, we expect the fixed point standard to be supported by 
embedded compilers. The current version of gcc v4.3.1 supports the fixed 
point extensions only for the MIPS target. Being integrated into the 
compiler, we expect an increase in performance for compiler-supported 
fixed point arithmetic in comparison to our library. Until there is sufficient 
compiler support, our library can be a transitional solution that allows 
developers to use fixed-point arithmetic. 
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