
† This work was supported in part by the Austrian FWF project TTCAR under contract
No. P18060-N04.

Chapter 16

PROVIDING STANDARDIZED FIXED-POINT
ARITHMETICS FOR EMBEDDED C PROGRAMS
Fixed-point Library based on ISO/IEC TR 18037

Wilfried Elmenreich1, Andreas Wolf2 and Maximilian Rosenblattl2
1Lakeside Labs, Mobile Systems Group, Institute of Networked and Embedded Systems,
University of Klagenfurt, 9020 Klagenfurt, Austria; 2Vienna University of Technology, 1040
Vienna, Austria

Abstract: The ISO/IEC Standard TR 18037 defines the syntax and semantics for fixed-
point operations for programming embedded hardware in C. However, there
are currently only few compilers available that support this standard.
Therefore, we have implemented a stand-alone library according to the
standard that can be compiled with standard C compilers. The library is
available as open source and written in plain C, thus can be used in various
target architectures as long as a C compiler is available. This book chapter
presents a brief description of the ISO/IEC standard and the library
implementation followed by an evaluation of code size and performance of the
fixed-point operations on the Atmel AVR architecture. A comparison with the
standard floating-point library (which is machine code-optimized to the target
architecture) shows that simple fixed-point functions such as addition,
subtraction and multiplication are more efficient, while more complicate
functions can only compete in the worst case behavior. The fixed-point
approach provides a smaller memory foot print, for typical applications where
only a small subset of functions is used. This is especially of interest for the
big market of embedded microcontrollers with only a few Kbytes of program
memory.

Key words: Fixed-point Arithmetics, C Programming Language, Embedded C, CORDIC

Wilfried
Textfeld
(c) Springer, 2009. This is the author's version of the work. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purpose or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the copyright holder.

Cite this chapter as:
Elmenreich W., Wolf A., Rosenblattl M. (2009) Providing Standardized Fixed-Point Arithmetics for Embedded C Programs. In: Martínez Madrid N., Seepold R.E. (eds) Intelligent Technical Systems. Lecture Notes in Electrical Engineering, vol 38. Springer, Dordrecht

2 Chapter 16

1. INTRODUCTION

The C language standard1 specifies two data types for expressing
fractional numbers, the float and the double data type. Both data types are in
a floating-point format consisting of sign, exponent and mantissa according
to the IEEE Standard for Binary Floating-Point Arithmetic (IEEE 754)2.

Since the regular integration of the floating-point coprocessor in the
processors for personal computers (in the x86 world, this became reality
when the 486DX replaced the 486SX in 1992), floating-point arithmetic was
available with high performance and became a ubiquitous feature for
computer programs.

On systems without a dedicated hardware module for floating-point
operations, these have to be emulated by a series of integer operations in
software. This is typically the case for embedded microcontrollers, which in
most cases do not come with a floating-point module since die size and,
therefore, the cost of a microcontroller is strongly increased when a floating-
point unit has to be added in hardware. Also, many embedded applications
do well without hardware floating-point support. The NIOS II soft core
processor3, for instance, requires around 700 Logic Elements when
synthesized as a 32 bit integer processor onto an FPGA (Field-
Programmable Gate Array). When adding a floating-point unit, the final
design requires around thrice the size of the plain integer design.

Without compiler support, a programmer either has to code the
operations manually, use one of the many libraries available for fixed-point
operations or use tools like Matlab4 that are able to generate C code that
simulates fixed-point arithmetic.

Existing solutions for fixed-point libraries suffer from one of the
following deficiencies: (i) the data types are not standardized, thus it is not
possible to reuse code with a different library, (ii) not all required functions
are supported, e. g., missing support for trigonometric functions, (iii) if the
library is rather complete, the overhead on linking the library to the final
program creates a large memory footprint, and (iv) the library is not written
in C but in C++ or an architecture-specific assembly language.

Unfortunately, until recently, there was not much compiler support for
fixed-point data types and no standard for implementing fixed-point data
types. In 2008, ISO issued a standard that is describing the syntax and the
data types for fixed-point arithmetic as an extension to the programming
language C5. However, for particular embedded target systems there is still a
lack of compilers that support this standard. Therefore, we have
implemented the data types and functions of this standard as a software
library that can be used with any standard C compiler.

16. Providing Standardized Fixed-point Arithmetics for Embedded C
Programs

3

It is the purpose of this chapter to describe a high-level language

implementation of the main parts of the ISO/IEC Standard TR 18037 and
evaluate the results by comparison to the standard software floating-point
library of the avr-gcc compiler, a compiler for the embedded AVR 8-bit
microcontroller series. Our intention is to provide a very generic
implementation that can act as a transitional solution for systems where
compiler support for the new standard is not yet available as well as a
solution for applications with moderate performance requirements.
Moreover, the timing behavior of the functions in our library has been
thoroughly analyzed on the AVR architecture so that these data supports
static Worst Case Execution Time analysis methods6 for real-time systems
on that hardware.

The rest of the chapter is structured as follows:
Section 2 reviews some basic properties of fixed-point and floating-point

arithmetic. Section 3 gives a short introduction to the ISO/IEC 18037
standard. Section 4 describes our implementation of a library. Section 5
depicts the evaluation results for our library on the AVR architecture.
Section 6 compares the results to floating-point operation. Section 7
concludes the chapter.

2. A CLOSER LOOK ON FIXED-POINT
ARITHMETICS

Most programming languages offer only floating-point arithmetic in
order to express fractional numbers. Being noticeable exceptions, ADA and
COBOL are one of a few programming languages that also natively support
fixed-point data types. The reason for this is that floating-point arithmetic
comes with the following advantages over fixed-point numbers:
• They approximate real numbers over a relatively wide data range. For

example, the float data type in C allows to express numbers between
1.175·10-38 and 3.403·1038. The double data type even supports numbers
between 2.225·10-308 and 1.798·10308.

• They provide, except for special situations, like for example very small
numbers near zero, a constant relative precision for approximating a real
number. The float data type has a precision of 2-24 = 5.960·10-8, the
double data type has a precision of 2-53 = 1.110·10-16.

• The number format is standardized by IEEE Standard for Binary
Floating-Point Arithmetic (IEEE 754) to four different precisions: single,
double, single-extended, and double-extended. Typically, programming
languages and most floating-point hardware support single and double

4 Chapter 16

precision7. There exists another standard, IEEE 8548 that also supports
specifying floating-point numbers on the basis 10, which is aligned to
representation of numbers by humans. However, unlike IEEE 754, IEEE
854 does not specify how a binary format of a number should look like so
that is less applicable in computer programming.
Therefore, most applications will do well in using floating-point

numbers. However, there are some points in favor of fixed-point numbers:
• Operations on fixed-point numbers are less complicated than floating-

point numbers. This argument is especially of weight, if the target
hardware has no special support for floating-point calculations, which is
often the case for embedded hardware. Therefore, using fixed-point
arithmetic can yield a performance benefit.

• When the numbers to be operated with are in an a priori known order of
magnitude, a fixed-point data type that has the radix in an appropriate
position can store a number more efficiently than the floating-point data
type, since the latter has also to store the flexible exponent. Again, this is
an issue for embedded systems with a limited amount of RAM memory.

• Due to the reduced complexity of the fixed-point operations, the resulting
code size is by a few kbytes smaller when using fixed-point instead of
floating-point numbers. Accordingly to the previous argument, this is an
issue for embedded systems with a limited amount of program memory.
If an application requires floating-point arithmetic or does better with

fixed-point depends mainly on the data set the application has to deal with.
Frantz and Simar9 discuss this on the example of video and audio
processing: While discrete cosine transformations and quantization
operations as they appear in video signal processing can be effectively
handled using integer operations while audio processing typically uses
cascaded filters where each filtering state propagates the error of previous
stages. Furthermore, audio signals must retain accuracy even if the signal
approaches zero due to the sensitivity of the human ear, which makes audio
applications less suitable for fixed-point arithmetic.

Therefore, the employment of fixed-point arithmetic can be advantageous

for some embedded applications where fractional numbers are required, but
floating-point operations would be too expensive in terms of hardware cost
or processing time.

16. Providing Standardized Fixed-point Arithmetics for Embedded C
Programs

5

3. FLOATING-POINT EXTENSIONS ACCORDING

TO ISO/IEC TR 18037:2008

Because fixed-point operations are commonly used for microcontrollers,
the ISO/IEC has summarized some guidelines and suggestions in a technical
report named ”Extensions for the programming language C to support
embedded processors”5, which defines some guidelines for including fixed-
point data type support into C compilers. This includes data types, #pragma
directives, constants, function names, and some mathematical conventions.

Although the standard is intended to describe fixed-point extensions for
C compilers, we have decided to use those guidelines for the implementation
of an external C library.

Having the real time and code size limitations in mind, we decided to
implement a reasonable subset of the data types defined by the standard. The
overall set of data types and the implemented types are shown in Table 1.
The numbers indicate the bits that are available for representing the integer
part and the fractional part. Note that the definition of our implementation
exceeds the number of specified bits, which is still in conformance with the
standard, since the given values specify the minimum number of bits for the
data types.

Table 16-1. Fractional data types according to ISO/IEC TR 18037
ISO/IEC Definition Implemented

signed short _Fract s.7
signed _Fract s.15
signed long _Fract s.23
signed short _Accum s4.7 _sAccum s7.8
signed _Accum s4.15 _Accum s15.16
signed long _Accum s4.23 _lAccum s7.24

FX_ACCUM_OVERFLOW defines the overflow behavior of the Accum

data types. When set to SAT, saturation is enabled; this means that when an
overflow occurs, the result is either the minimal or the maximal possible
value of the data type. This behavior often means a significant loss of speed
and further increases code size, so the #pragma is normally set to
DEFAULT, which is the other possible value. Since we cannot implement
#pragmas in a library, this behavior can be set with a #define
FX_ACCUM_OVERFLOW before the library header file is included.

FX_FRACT_OVERFLOW is the same for the Fract data types. Since we
have none of them implemented, this #pragma is not used in our library.

FX_FULL_PRECISION forces the implementation to gain maximum
precision, by allowing a maximum error of one ULP (Unit in the Last Place)

6 Chapter 16

of the result. However, for particular problems, a precision of 2 ULPs on
multiplication and division operations is sufficient, which enables
optimizations towards execution speed and code size. For our
implementation the FX_FULL_PRECISION switch is not implemented,
instead the precision has been predicted separately for each function.

Almost any meaningful data type handling and some low level arithmetic
functions are defined through naming conventions and behavior descriptions.
There is one version for each data type respectively several for conversion
and mixed type functions. Except for their parameters they differ also by
some trailing and/or leading characters which describe the type of the
parameters respectively the result.

4. LIBRARY IMPLEMENTATION

The primary goal of this work was to provide a fixed-point library
especially for use with Atmel 8 bit processors in combination with real time
applications. So, performance and performance predictability were strong
requirements for the design. Also flash memory was very limited, therefore
small code size was desired.

To optimize code for size and speed, every function was implemented as
accurate as possible, trying to keep it mathematically fast and simple (thus
reducing code size). Apart from optimizing the overall code size of the
library, each function has been compiled into a separated object file that is
only linked to the final program if the function was used.

A main decision that was made refers to the data types. The ISO/IEC
paper recommends both the _Fract and the _Accum type. The difference
between those two types is only the lack of integral bits in the _Fract type
while not increasing the number of fractional bits, so we decided to
implement the _Accum type. To further limit the complexity of the
implementation, we only implemented two subtypes of the _Accum type.
Although the two data types should be named _Accum and long _Accum,
there is a problem with the name of the second type. As we use typedef to
define the type, the name of the data type must not have blanks in it. So we
decided to call it _lAccum, which should be kept in mind when comparing
AVRfix with the ISO/IEC specification.

Both types are signed and held in a 32 bit container (signed long). While
_Accum has 15 integral and 16 fractional bits, _lAccum has only 7 integral
bits but therefore 24 fractional bits. Because we use the long data type as
container, addition and subtraction are working implicitly by using integer
arithmetic as long as _Accum and _lAccum are not mixed. Therefore,
addition and subtraction require no additional function in the library.

16. Providing Standardized Fixed-point Arithmetics for Embedded C
Programs

7

Overloading of operators is not supported in ANSI-C, so for example a

multiplication needs to be done by a function call or a macro. While function
calls produce some overhead on runtime, the use of macros increases code
size. Most operations except conversion functions are implemented as
functions. Comparison functions are working as long as the data types are
the same; casting has no effect for _Accum and _lAccum. If a comparison
between a long and an _Accum is needed, one (or both) of the variables
needs to be converted before the comparison can be done. The same
approach is needed for assignments.

To meet requirements of code size and execution speed, the
FX_FULL_PRECISION switch has not been implemented. Instead, the
expected precision has been evaluated and documented separately for each
function in the project documentation10. This evaluation includes also
sophisticated math functions such as trigonometric functions and square
root. The library is completely written in C and has been tested and
evaluated with the established compilers avr-gcc 3.3.2 and the Microsoft
Visual Studio IDE 6.0.

In reference to the ISO/IEC report, the naming conventions are used
accordingly whenever possible, meaning that for _Accum a k, for _lAccum
lk and for _sAccum sk is used as suffix to the function name to indicate the
type of the parameters. The type of the return value is indicated by a letter
before the function name. No letter suggests _Accum, an l means that the
return value is of type _lAccum, and an s refers to _sAccum.

For example, the multiplication function that multiplies two _Accum
values and returns an _Accum value, is named mulk. The multiplication
function that multiplies two _lAccum values and returns an _lAccum value,
is named lmullk.

Furthermore, the ISO/IEC paper specifies the
FX_ACCUM_OVERFLOW flag, which defines the behavior if an overflow
occurs. If it is set to saturation (SAT), the value will be either the maximum
or minimum possible value if an overflow occurs. By default, an overflow
will give an undefined result. While in the ISO/IEC paper this flag is defined
as a #pragma directive, we needed to use a #define for the
FX_ACCUM_OVERFLOW flag. Independent from this flag the behavior
can be achieved by calling the respective version of the function directly. If a
function provides both behaviors, there exist two functions which have either
S for saturation or D for default behavior as trailing character after the
function name. So one can attach an S to a function name to force saturation
behavior or a D to force the default behavior (resulting in e.g. mulkD or
mulkS for the two versions of mulk) if the function provides two different
behaviors.

8 Chapter 16

Apart from the four arithmetic basic operations, the library support also
operations such as square root, logarithmic and trigonometric functions. For
the latter we have decided to use the CORDIC approximation11 instead of a
Taylor series, because it saves considerable program memory when
requiring sine and cosine (or, consequently, tangens) in the same program
while achieving almost the performance of the Taylor version.

5. EVALUATION

For tests and benchmarks we used an evaluation board equipped with an
Atmel ATMEGA 16, providing 16 MHz clock, 16 Kb flash memory and 2
Kb SRAM. For evaluating the correctness of the calculations done by the
library, we tried to cover all meaningful calculations. To speed up this brute
force approach, we mainly did this on a PC and compared the result with
either results from 64 bit integer calculations or precalculated reference
results. The reference results have been created with the statistical
computing environment R for a meaningful range. For example, the
meaningful range for sine and cosine is from zero to two times Pi, meaning
for an _Accum parameter, that 411774 calculations and comparisons had to
be done. For functions that have no fixed execution time, the execution time
over parameter is recorded and visualized via gnuplot.

5.1 Evaluation on the Microcontroller

To measure execution time and verify the calculation results, we wrote a
small microcontroller program. To measure execution speed, we use the 16
bit timer. The counter is reset to zero, the function is called and the counter
value is fetched afterwards. The execution time, parameters and result is then
transmitted via UART. To speed up transmission, a high bit rate is used and
the data is sent binary, so a conversion was needed to plot the data in
gnuplot.

5.2 Accuracy Test

To test the accuracy of the implemented functions, we compared the
output values with precise 64-bit calculations for the _Accum and _lAccum
data type (respectively with precise 64-bit calculations for the _sAccum data
type) for addition/subtraction, multiplication and division. For higher
mathematical operation pre-calculated reference values have been used. The
accuracy test was done on a PC as we use regular C code and the execution
is much faster as on the microcontroller. We assumed equality of the output

16. Providing Standardized Fixed-point Arithmetics for Embedded C
Programs

9

after some calculations done on both, the PC and the microcontroller. The
established Microsoft Visual C++ 98 environment was used as the reference
compiler.

5.2.1 Multiplication and Division

To test multiplication and division, we simply treated the _Accum and
_lAccum values as signed 64-bit integer values, repeated the calculations
with 64-bit accuracy and compared the results. Testing has been done
completely for the _sAccum type. For the other data types, extensive testing
including the critical value pairs has been performed.

For a multiplication x · y, all values |x| > (2^i+f - 1) · 2-f / y will lead to an
overflow for y > 1, with i being the number of integral bits an f being the
number of fractional bits of the data type. For a division x/y, all values
x > (2i+f - 1) · 2-f · y will lead to an overflow. According to the data type, this
is only a limitation for x if y < 1.

Extensive testing of the functions showed the following results:
• The _sAccum functions have a maximum error of 0 for multiplication

and division, both tested with default and saturation behavior.
• The _Accum functions have a maximum error of 2-16 for multiplication

and well-defined division calculations, both tested with default and
saturation behavior.

• The _lAccum functions have a maximum error of 2-24 for multiplication
and well-defined division calculations with default behavior. For
saturation behavior, the maximum error was 2-23.

5.2.2 Extended and Trigonometric Functions

For extended and trigonometric functions (e.g. sine/cosine, logarithm
etc.), the comparison values were provided by R from the R Foundation, a
statistical calculation environment. Most sophisticated functions have an
error behavior that strongly depends on the input. Thus regarding the error
over the whole input range makes sense. For example, Figure 1 depicts the
error function for the _Accum square root function. An exhaustive
evaluation of all functions can be found in the project documentation10.

10 Chapter 16

Figure 16-1. Accuracy distribution for sqrk

5.3 Performance Testing

Our first attempt to test performance of our implementation was to use
the destination device, an Atmel ATMEGA 16, but as its maximum speed is
16 MHz and the serial port is a very slow transmission system, we decided to
go a different way. We implemented a very simple simulator to test the
performance on a PC.

5.3.1 The Disassembler & Simulator Creator (DsimC

The Disassembler & Simulator Creator (DsimC) is a little Java
Application that disassembles an .srec-file for an Atmel ATMEGA16 and
transforms each instruction into a piece of C code. This code can be
compiled and executed on a PC instead of downloading and executing the
original code on the microcontroller.

This was possible, because the ATMEGA16 has no caches or other
elements that make code execution times indeterministic, but only a two-
stage pipeline with very low effect on execution time. So each hardware
instruction is expanded to a group of C code instructions which performs an

16. Providing Standardized Fixed-point Arithmetics for Embedded C
Programs

11

equivalent operation, maintains the virtual status register flags and
increments a tick counter which furthermore can be used to determine the
performance of the library functions. In addition, every write to the UART
Data Register (UDR) results in a file output operation, which gives us a very
high speedup. As assumed, the maintenance of the status register flags
turned out to be most expensive, resulting in a simulation speed of only
about 25 to 30 times faster than on the ATMEGA16 when using a Pentium-
M with 2 GHz. This seems to be a good speedup, but most of it comes from
the serial port implementation.

When we compared the performance values calculated by our
simulations with values we determined on the microcontroller, we noticed a
slight drift. It turned out that the simulator counts too many ticks under
certain conditions, resulting in a few ticks more per function call, if ever. But
when we tried to isolate the operations causing this drift, it turned out to be
very tricky because of lack of an in-circuit debugger for the microcontroller
we would have to flash the target many times to reduce the code range in
which the drift appears. In our analysis we have noticed that the drift is only
in one direction, if ever. Fortunately, the simulator never gives fewer ticks
than it would take on the microcontroller, so this is sufficient to get
guaranteed worst case execution time values. However, by taking the
discrepancies between simulator and real hardware into account, tighter
WCET values would be possible.

6. COMPARISON

The traditional way for fractional computing is the usage of floating-

point operations, for which a various number of libraries exist. We compared
our fixed-point library with the floating-point library (libm) that comes with
the avr-gcc bundle.

6.1 Accuracy

All data types compared here (float, double, _Accum and _lAccum)
reside in a 32-bit container. But the floating-point data types have to separate
the container for exponent and mantissa, while the fixed-point data types
have the whole container for the sign bit, the integral bits and the fractional
bits. So, within the fixed-point range (231-1) · 2-16 and (231-1) · 2-24,

12 Chapter 16

respectively, the _Accum and _lAccum types are more accurate as long as
the value to be expressed matches the fixed-point range in its order of
magnitude. The _sAccum data type has clearly a lower accuracy than the
floating-point data types since it resides in a 16-bit container only.

6.2 Addition and Subtraction

The fixed-point addition and subtraction operations use the same
instructions as normal integer operations, so they really make the cut over
floating-point addition and subtraction (as shown in Table 2).

Table 16-2. Performance comparison for addition operations
Data type Execution time in ticks
double 74 to 80
_sAccum 14
_Accum and _lAccum 23

6.3 Multiplication

Compared to the multiplication functions mulkD, mulkS, lmullkD and
lmullkS the average performance of the double operation is higher, while the
WCET of the fixed-point multiplication functions is better. This is due to the
fact that the double data type is only implemented in 32 bit by the avr-gcc,
thus a double multiplication involves a 23 bit multiplication of the mantissa
and an addition of the exponent. In addition, the floating-point library has
been optimized at assembly code level for average performance, which
explains the results.

Table 16-3. Performance comparison of multiplication operations
 Execution time in ticks
Data type Default Saturated
double 53 to 2851 -
_sAccum 79 to 82 92 to 95
_Accum 337 to 350 215 to 359
_lAccum 594 to 596 198 to 742

6.4 Division

Compared to the division functions divkD, divkS, ldivlkD and ldivlkS the
minimum, average and maximum performance of the double operation is in
general better, which can be seen in the overview given in Table 4. As a
consequence, if possible, fixed-point divisions should be avoided for
performance reasons.

16. Providing Standardized Fixed-point Arithmetics for Embedded C
Programs

13

Table 16-4. Performance comparison of division operations
 Execution time in ticks
Data type Default Saturated
double 66 to 1385 -
_sAccum 634 to 711 650 to 727
_Accum 820 to 1291 853 to 1386
_lAccum 876 to 1405 862 to 1416

6.5 Floating-point Code Size

We have measured the code size for using the floating-point functions
provided by the compiler. Using a simple addition, for example adds about
1740 bytes in code size. To cover the basic arithmetic operations about 3k of
Flash ROM are needed. In contrast, when using AVRFix and the datatype
_Accum with default behavior, only 758 bytes are needed. For _lAccum 848
bytes and for _sAccum only 260 bytes are needed. Thus, AVRFix has a clear
advantage in code size compared to floating-point operations.

7. CONCLUSION

The contributions in this chapter are the implementation and evaluation
of a generic fixed-point library based on the ISO/IEC Standard TR 18037.
The documentation10 and the source code is available as open source.

The fixed-point library contains not only basic mathematical functions
and conversions but also more sophisticated operations such as square root,
logarithmic and trigonometric functions. The linking model allows having
only the used functions in the final assembler code, which saves
considerable program memory over monolithic libraries.

We have performed exact performance measurements for a specific
target architecture, the Atmel AVR with avr-gcc compiler. The results from
this analysis can be used for static WCET analysis and optimization of
execution time and code size, which is of special interest for embedded
application on low-cost microcontrollers with few resources.

Addition and subtraction are generally by a factor of 3 to 5 faster than
floating-point operations. The fixed-point multiplication and division have
worse average performance, but a better WCET than the floating-point
operations for most data types. Moreover, since the library has been written
in C, there is also room for hardware-specific optimizations of the library,
e.g., by using inline assembler functions for time-critical parts. Regarding
code size the fixed-point operations are clearly in favor.

14 Chapter 16

If only addition, subtraction and multiplication is needed or a small data
type like _sAccum is sufficient, the use of fixed-point operations can clearly
be favored from the viewpoints of speed, WCET, and code size.
Sophisticated functions like trigonometric and exponential functions are
slower than the fixed-point versions, but require less program memory,
which makes the fixed-point implementation attractive for projects on small
embedded microcontrollers where program memory becomes the main
limiting factor. The optional saturation behavior is a nice feature which
cannot easily be reproduced by floating-point calculations and small code
size may be a decisive advantage.

In the future, we expect the fixed point standard to be supported by
embedded compilers. The current version of gcc v4.3.1 supports the fixed
point extensions only for the MIPS target. Being integrated into the
compiler, we expect an increase in performance for compiler-supported
fixed point arithmetic in comparison to our library. Until there is sufficient
compiler support, our library can be a transitional solution that allows
developers to use fixed-point arithmetic.

REFERENCES

1. ISO/IEC, Programming Languages -- C, approved by ANSI Accredited Standards
Committee, ISO/IEC 9899:1999, December, 1999

2. IEEE, Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std 754-1985; IEC-
60559:1989, 1985

3. Altera Corporation, San Jose, CA, USA. Nios II Processor Reference Handbook Version
7.0, March 2007

4. D. P. Magee, Matlab extensions for the development, testing and verification of real-time
DSP software, In Proceedings of the 42nd Annual Conference on Design Automation,
pages 603–606, San Diego, CA, USA, 2005.

5. ISO/IEC, Programming languages -- C -- Extensions to support embedded processors,
ISO/IEC TR 18037:2008, JTC 1/SC 22, 2008

6. P. Puschner, Worst-case execution time analysis at low cost, Control Engineering Practice,
6:129–135, January 1998.

7. D. Goldberg, What every computer scientist should know about floating-point arithmetic,
ACM Computing Surveys, 23(1):5--48, March, 1991

8. IEEE, Standard for Radix-independent Floating-point Arithmetic, ANSI/IEEE Std 854-
1987, October 1987

9. G. Frantz and R. Simar, Comparing fixed- and floating-point DSPs. Texas Instruments,
Dallas, TX, USA, 2004. White paper available at http://ocus.ti.com/lit/ml
/spry061/spry061.pdf.

10. M. Rosenblattl and A. Wolf, Fixed-point library according to ISO/IEC standard DTR
18037 for Atmel AVR processors, Bachelor’s thesis, Vienna University of Technology,
Vienna, Austria, 2007. http://sourceforge.net/projects/avrfix.

11. J. E. Volder, The CORDIC trigonometric computing technique. IRE Transactions on
Electronic Computers, Volume EC-8(3), 9 1959.

