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Abstract---Communication systems utilise correlation filters to
detect waveforms. In a broader sense, these filters examine the
amount of resemblance between a template pattern and the input
pattern. In the domain of smart grids, many applications require
the detection of active electrical appliances, their condition
as well as their current state of operation. Furthermore, the
identification of power eaters, the recognition of ageing effects,
and the forecast of required maintenance represent important
challenges in (home) energy management systems.

In this paper, we examine the applicability of correlation filters
as a possible solution to meet such challenges. First, we introduce
the concept of predictability to power consumption patterns of
electrical appliances. Second, we present our concept and the
implementation of correlation filters for this kind of application.
The correlation filters utilise a particular consumption pattern
of an electrical appliance to detect the respective appliance in
energy readings from smart meters and smart plugs. Lastly, we
assess the performance of the correlation filters on the real-world
energy consumption dataset GREEND, which provides readings
from smart meter data as well as appliance-level measurement
equipment. As the results approve, the correlation filters show a
good performance for appliances with predictable consumption
patterns such as refrigerators, dishwashers, or washing machines.
Thus, we propose that future work should evaluate the applica-
bility of correlation filters in appliance diagnosis systems.

Index Terms---Pattern Recognition, Smart Metering, Correla-
tion Filter, Smart Meter, Appliance Diagnosis

I. INTRODUCTION

Smart meters and smart plugs provide information about the
energy consumption of electrical appliances. In general, these
energy readings serve to determine the overall consumption
of the residents and in a further step also to bill the customer
for the consumed amount of energy. By the application of
data analysis techniques, it is also possible to utilise these
readings to identify active appliances, determine their condition,
perform load disaggregation, or to extract behavioural patterns
of residents. The shape of the power consumption over time
is referred to as power consumption pattern. These patterns
provide appliance-specific information, which could be utilised
to identify abnormal behaviour of appliances. Such abnormal
behaviour could be the consequence of ageing effects or the
need for maintenance. In order to save costs for measurement
equipment and to detect such abnormal behaviour as fast as
possible, it would be desirable to apply a simple and effective
detection technique, which is applicable by low-performance
measurement equipment such as smart plugs or sensor nodes.

In communication systems, correlation filters (matched
filters) are utilised to detect input waveforms and to distinguish
between them. Such filters are equipped with a template pattern,
which they aim to identify in an input stream of data. In
particular, their detection mechanism bases on the correlation
method, which can also be applied by low-performance
measurement instruments. We propose to utilise correlation
filters to detect appliance consumption patterns in smart plug
and smart meter readings. Each correlation filter serves to
detect a certain electrical appliance by means of a power
consumption pattern, which characterises the consumption
behaviour of the respective appliance over time. This behaviour
can be categorised in predictable behaviour and non-predictable
behaviour. As the evaluation will show, the type of behaviour
influences the detection performance of a correlation filter.

The focus of this paper lies on the conception, implemen-
tation and evaluation of correlation filters for the application
as appliance detectors in energy monitoring systems and is
organised as follows: Section II presents related work. Section
III reviews the Pearson product-moment correlation. Section IV
introduces the concept of predictability to consumption patterns
of electrical appliances. Section V presents our concept and the
implementation of the correlation filter. Section VI assesses
the performance of correlation filters through application on an
energy consumption dataset. Section VII concludes the paper
and provides an outlook to future work.

II. RELATED WORK

Event detection approaches in load disaggregation algorithms
utilise either expert heuristics, probabilistic models, or matched
filters [1]. Up to present, several detection techniques based on
matched filtering have been proposed. Such a filter correlates
an unknown input pattern with a known template pattern.
The substantive considerations of a transient event detector
for the application in load disaggregation were discussed in
[2]. The presented detector applies a preprocessor on the
aggregate power signal and performs appliance detection on
the disaggregated signals. A wide variety of related work
evaluated possible applications for matched filters in the context
of appliance detection. The authors of [3] suggest to detect
and distinguish between appliances by means of their turn-
on transient patterns. A related idea is presented in [4], in
which the authors suggest to detect appliances by matching



subpatterns of power signals such as the transients of rising or
falling consumption. The classification system in [5] applies
Fast Fourier Transform (FFT) on transient current signals by
further analysis of the resulting spectrum in order to detect
appliances. The presented detector in [6] employs load transient
shapes of current signals. The presented work reveals possible
strategies and mechanisms to apply correlation filters (i.e.,
matched filters) as appliance detectors in measurement systems.
A system, which performs load identification, was presented in
[7] as well as [8]. This system applies genetic programming as
well as a neural network to detect appliances based on their turn-
on transients. Contrary to related implementations we propose
to use full shapes instead of turn-on transients. A full shape (i.e.,
pattern) describes the behaviour of a certain appliance as well
as the physical task that the appliance performs more precisely.
In order to detect appliances on the basis of their power
consumption over time we propose a system, which comprises
a set of correlation filters (i.e., matched filters) to perform
appliance detection, a finite set of template patterns to describe
the power consumption behaviour of the appliances over time.
The correlation filters in our system apply template patterns
that describe one entire workflow, the power consumption over
time, for a specific programme of the respective appliance
e.g. a certain washing programme of a domestic washer. Due
to this, the derived template patterns represent unique shapes
with characteristic transients. We hypothesise that such kind
of templates are well-suited to detect and distinguish between
appliances by applying a correlation filter.

III. PEARSON CORRELATION COEFFICIENT

The Pearson product-moment correlation provides informa-
tion about the strength of association between two variables [9].
In particular, to test two variables for linear associations the
Pearson correlation coefficient is of interest. This coefficient
is a measure of the strength of the linear relationship between
two variables x and y. The Pearson correlation transforms the
two variables into standard scores, which makes it possible to
test distinct physical quantities for correlation. The coefficient
is defined for a population as well as for a sample. For a
given population the Pearson correlation is denoted by r and
is defined as the ratio between covariance and the product of
the standard deviations of the respective variables.

r = rx,y =
cov(x, y)

σxσy
=
E[(x− µx) · (y − µy)]

σxσy
(1)

The Pearson correlation coefficient r is a real number and
takes values in [-1,1]. For r > 0 the coefficient indicates a
positive association, from which follows that an increasing
variable x results in an increasing variable y. On the other
hand, the Pearson coefficient indicates a negative association
for r < 0, which describes that the variable y decreases for an
increasing variable x. If and only if the coefficient is equal
to zero, then there is no linear association between the two
variables x and y. The stronger the association between the
variables is, the closer to 1 will be r. In many applications a
decision is made on basis of the correlation‘s strength. The

authors of [10] propose a categorisation for the strength of the
Pearson correlation: For |r| = 1, we declare the correlation
perfect, for 0.8 ≤ |r| < 1, we declare the correlation high, for
0.6 ≤ |r| < 0.8, we declare the correlation medium, and for
|r| < 0.6, we declare the correlation low. This categorisation
of the strength of correlation will be applied throughout the
paper.

IV. PREDICTABILIY OF CONSUMPTION PATTERNS

Appliances can be categorised in single-state, multi-state,
and infinite-state appliances [11]. These categories describe the
power consumption behaviour of a certain appliance for a single
operation. The shape of the power consumption over time for a
single operation is referred to as the power consumption pattern.
Figure 1(a) shows such a consumption pattern. Therefore, the
power consumption pattern states the amount of consumed
energy as well as the duration of the operation. Furthermore,
a power consumption pattern models the behaviour of the
respective appliance for a specific programme over time.

The group of predictable appliances represents a specific
category of electrical appliances, since the power consumption
pattern for every possible programme can be predicted. This
means that every predictable appliance comprises a set of
programmes, which it is able to execute. This set consists of
a finite number of power consumption patterns. Each pattern
describes an unique power consumption behaviour i.e. pro-
gramme of the respective appliance. From this follows that the
behaviour of the respective appliance can be described entirely.
Furthermore, every possible power consumption pattern can be
predicted. Examples for such appliances are washing machines,
dishwashers, tumblers, refrigerators, freezers, coffee brewers.

A vast number of appliances does not define a fixed operation
duration. This means that neither the energy consumption nor
the shape of the power consumption pattern can be predicted.
The length of non-predictable power consumption patterns
highly varies between two operations. For this reason, the
behaviour of such an appliance can’t be described by a finite
set of power consumption patterns since every operation of
the respective appliance results in a novel pattern. A high
number of household appliances is controlled by the inhabitant.
For instance the filling level of a water kettle depends on
the amount of water that the inhabitant fills into the kettle.
The filling level will influence the amount of energy, which
the water kettle requires to bring the water to boil. For this
reason, the power consumption pattern of each heating process
will highly vary from the previous ones. Examples for such
appliances are microwave ovens, water kettles, hair dryers,
TVs, or lighting.

V. CORRELATION FILTER

A correlation filter (matched filter) is a signal processing
element, in which the input signal is examined for association
to a known pattern, the template. This test for association
can be implemented by convolution with the conjugated
time-reversed template or by correlation of the input pattern
with the template. By means of our application we define



a correlation filter as a software tool, which examines two
input variables for a linear association by means of the
Pearson correlation. The correlation filter contains two registers:
The template register and the measurement register. Both
registers are of equal length. The former contains the template
pattern, which we seek to detect in the content of the latter
register, the measurement register. Figure 1(a) shows such a
template pattern. The data in this register is updated after every
measurement and the organisation follows the first in first out
(FIFO) method. As input pattern we define the content of
the measurement register, which is updated every time a new
power measurement sample is available. Figure 1(b) shows
a possible input pattern, which is shifted into the correlation
filter. A threshold value, the correlation threshold denoted by γ,
serves as basis of decision-making for every correlation filter.
As we will see in subsequent examinations, this threshold is
an influential parameter for appliance detection. As already
mentioned, the correlation filter applies the Pearson product-
moment correlation, introduced in Section III, to examine the
linear association between the input pattern and the template
pattern. To compute the Pearson product-moment correlation,
the correlation filter applies the corrcoef function, a function
embedded in the NumPy package1. Depending, if the computed
Pearson coefficient exceeds the correlation threshold γ, the
return value of the function correlate equals zero or the
computed Pearson coefficient. The values of the Pearson
coefficient lie in the interval [0,1], where a coefficient of
0 indicates no correlation and 1 full correlation between the
two input variables. The distance of the Pearson correlation
to full correlation 1 − |r| will depend on how precisely the
template pattern describes the power consumption over time
for a given electrical appliance’s workflow. If and only if
these two patterns are identical, then the result of the Pearson
correlation, the Pearson correlation coefficient r, equals 1.
Any deviation between the two input patterns will result in a
correlation coefficient smaller than 1. This deviation may be
the consequence of disturbances, measurement uncertainties,
or noise. The significant parameter to decide if the linear
relationship is high enough to classify the pattern as detected
is the correlation threshold γ. The magnitude of r can be
interpreted as an estimation about how well the two patterns
resemble each other. To decide if a pattern was detected, we
test if r is equal or greater than the certain correlation threshold
γ. If r exceeds or equals the threshold, then the correlation
filter starts to track the progress of the correlation coefficient
over time i.e., the filter computes the correlation coefficients
for the next M incoming samples immediately and stores them
in a tracking window, where M represents the length of the
tracking window. At the moment where this tracking window
contains M elements, the filter selects the biggest element
since it represents the perfect match of the template pattern in
the input stream, as Figure 1(c) indicates. By means of this
mechanism the perfect fit of the input and the template pattern
can be examined.

1http://numpy.org
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(a) Consumption pattern of a refrigerator
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(b) Input signal at the correlation filter
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(c) Correlation coefficient r over time

Fig. 1: Example detections of a refrigerator

VI. EVALUATION

For the purpose of the assessment of energy management
algorithms i.e. load disaggregation solutions, several energy
consumption data sets were recorded. Widely applied data
sets in the domain of smart homes are REDD [12], ECO
[13], AMPds[14], and GREEND [15]. The performance of
the correlation filter is assessed on the the real-world energy
consumption dataset GREEND. The ground-truth data covers
one entire year of energy consumption data and integrates a
refrigerator (Whirlpool ARG 737), a dishwasher (Whirlpool
ADG 555 IX), a microwave oven (Whirlpool AMW 494/IX),
a water kettle (Philips HD 4619), a washing machine (Zanussi
F1215), and a hair dryer (Braun 3522). For the predictable as
well as the non-predictable appliances, one power consumption
pattern per appliance was manually extracted from appliance-
level power measurements. The reference pattern was selected
as the one with the median level of energy consumption out of
a set of five arbitrarily selected patterns. This pattern comprises
the power consumption of the respective appliance over time



for a specific programme. Therefore, the pattern integrates
several characteristic events such as turn-on, transients between
operational modes, and turn-off.

In this assessment, the detection rate serves as measure of
performance. This rate is defined as the ratio between the
number of detected patterns in the input data and the number
of patterns integrated in the ground-truth data. The correlation
threshold γ describes the minimum correlation, which has to be
exceeded in order for the correlation filter to detect the template
pattern in the input data. The performance of the correlation
filter is assessed for thresholds in the interval [0.5, 0.95]. On
the basis of the number of detected patterns, the respective
detection rate is computed for γ in the set [0.5, 0.95] with a
step size of 0.01. In this way the performance is evaluated for
low, medium, as well as high correlation on the data record.

A. Detection on Appliance Level

Data acquired on appliance-level exclusively contains in-
formation about the energy consumption of one particular
appliance. Devices such as smart plugs are attached to a certain
appliance to exclusively monitor its energy consumption. The
recorded energy consumption is expressed as a time series of
power consumption measurements. A (moving) time window of
this time series represents the input pattern (measured pattern)
of the correlation filter. The strength of the correlation gives
information about the deviation between these two patterns
throughout the input data. On the one hand, this deviation
influences the number of detected appliances and consequently
the detection rate. On the other hand, the correlation filter
integrates a parameter, which can be adjusted in order to
influence the detection rate, the correlation threshold γ. The
purpose of this parameter is to serve as threshold in order to
decide if the computed correlation coefficient r is high enough
to declare a detection. From another perspective, the correlation
threshold defines a minimum amount of resemblance that the
correlation has to indicate in order to declare a detection. For
this reason, the impact of the correlation threshold on the
detection rate has to be determined.

If the threshold γ is defined in the range of high correlation
e.g. γ = 0.8, then this will result in a lower detection rate
than for γ in the range of medium correlation e.g. γ = 0.6. In
order to prove this hypothesis, the correlation filter is applied
to appliance-level data for a set of correlation thresholds.
The utilised appliance-level data covers one year of energy
consumption data. Figure 2(a) shows the detection rates over
a set of correlation thresholds γ for the selected household
appliances. Equal to Section III, we distinguish between low,
medium, and high correlation in the case of the correlation
threshold γ. As the trajectories show, the detection rates
decrease significantly for an increasing correlation threshold.

The correlation filter provides the best performance for an
appliance with a predictable power consumption pattern, the
refrigerator. The refrigerator achieves the highest detection
rate for medium as well as high correlation, as Figure 2(a)
shows. For a correlation threshold γ in the range of low and
medium correlation, the correlation filter is able to detect more

than 80% of the patterns in the input data. The reason for
this comparably high detection rate is the optimal selection of
the template pattern. The utilised template pattern describes a
specific physical task that the refrigerator periodically performs.
This task is to cool the content of the refrigerator. Due to
the repetition of this physical task, the deviation between the
template pattern and the measured power consumption is small
enough to detect most of the patterns.

The dishwasher as well as the washing machine likewise
belong to the category of appliances with predictable power
consumption pattern. In contrast to the refrigerator, the de-
tection rate for medium and high correlation is substantially
lower than for the refrigerator. For a correlation threshold γ
of 0.8, the correlation filter detects 62% of the patterns of the
dishwasher and 30% of the patterns in the case of the washing
machine. This performance gap is a result of the detection
approach. The more distinct programmes an electrical appliance
comprises, the lower the detection rate for the correlation filter
detector will be.

In contrast to predictable patterns, the duration as well
as the energy consumption of non-predictable patterns can’t
be predicted. Appliances, which produce non-predictable
consumption patterns, don’t have programmes with a fixed
duration. For this reason the shape of the power consumption
pattern is not predictable. Examples for appliances with non-
predictable consumption patterns are water kettles, microwave
ovens, and hairdryers. Figure 2(a) shows the detection rate
of the correlation filter over the correlation threshold γ. For
a correlation threshold of γ = 0.6, which corresponds to the
range of medium correlation, 80% of the patterns for the
hairdryer and the microwave oven were detected, whereas
less than 60% of the patterns for the water kettle. In the case
of a correlation threshold in the range of high correlation
e.g. γ = 0.8, the detection rate declines under 50% for all
appliances with non-predictable power consumption pattern
in this evaluation. With a rising correlation threshold, the
minimum amount of resemblance decreases. This minimum
amount of resemblance is defined by the ratio of the template
pattern and the measured pattern, SNRmin. In the case of
the non-predictable appliances in this evaluation, the ratio
between template and measured pattern is below the demanded
threshold for more than every second measured pattern. This
is a consequence of the strongly varying shape of the power
consumption pattern.

B. Detection on Aggregate Level

Instruments such as smart meters measure the aggregate
power consumption. Consequently, this aggregate power
consumption represents the superposition of multiple power
consumption patterns. As Figure 2(b) confirms, decrease
the detection rates for the six household appliances for an
increasing correlation threshold. In contrast to the evaluation
on appliance-level, in this evaluation the detection rates exceed
the 1 mark. A detection rate greater than 1 states that more
patterns were detected than the ground-truth data contains in
fact. This is a consequence of incorrect detections performed
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Fig. 2: Detection Rate of the Correlation Filter

by the correlation filter, as a result of false alarms. The lower
the correlation threshold γ is set, the higher the number of
false alarms and therefore, the higher the detection rate. The
correlation threshold defines a minimal amount of resemblance
expressed as correlation between the stored template pattern
and the measured pattern. If this threshold is defined in the
range of high correlation e.g. γ = 0.8, then on the one hand
the detection rate will be lower than for medium correlation,
but on the other hand likewise the number of false alarms
will be significantly lower. For this reason a trade-off between
number of false alarms and the detection rate exists.

Figure 2(b) shows the detection rates for six household
appliances over the correlation threshold γ. These detection
rates were obtained by application of the correlation filter to
the aggregated energy consumption data over the period of
one year. For correlation thresholds in the range of medium
correlation 0.6 ≤ γ < 0.8, the detection rates show a high
amount of false alarms. One exception represents the detection
rate of the refrigerator, which remains under the 1 mark for all
applied correlation thresholds. The highly incorrect detection
rates of the other appliances in the range of medium correlation
are a consequence of false alarm detections. Such detections are
declared by the correlation filter, when the correlation threshold
γ is exceeded by the correlation between input pattern and
template pattern.

In the context of aggregate-level measurement data, the
input pattern is a superposition of several power consumption
patterns. If the template patterns of two appliances closely
resemble each other, then the correlation filter will very likely
perform a false alarm detection. This false alarm detection
represents an incorrect detection. In order to minimise the
number of false alarm detections for a certain appliance, the
correlation threshold γ has to be defined in the range of high

correlation i.e. γ ≥ 0.8. As the results of the evaluation
in Figure 2(b) confirm, the detection rates decrease under
the 1 mark for all electrical appliances with predictable
power consumption. In this evaluation, such appliances are
the refrigerator, the dishwasher, and the washing machine.
In particular, the detection rate of the refrigerator shows a
conformable trend to the evaluation on appliance level, which
is displayed in Figure 2(a). As the Figure confirms, a clear
gap in performance between the refrigerator’s pattern and the
remaining patterns exists. This gap originates from several
characteristics of the refrigerator.

First, the refrigerator periodically performs an identical
operation. For this reason the stored template pattern and the
(predictable) input pattern resemble each other closely. On
account of this close resemblance, the deviations between the
template pattern and the measured patterns are small enough to
demand a high correlation threshold. Such a high correlation
threshold e.g. γ ≥ 0.8 decreases the chance of performing a
false detection.

Second, the pattern of the refrigerator contains a charac-
teristic turn-on transient, as Figure 1(a) shows. In particular,
the overshoot during the transient phase shapes the power
consumption in a specific manner. Such characteristics make
template patterns unique and well-distinguishable from other
patterns.

In summary, the application of the correlation filter on
aggregate-level data faces a trade-off between number of false
alarms and detection rate. To minimise the number of false
alarms we propose the application of a correlation threshold
in the region of high correlation i.e. γ ≥ 0.8. In general, a
high correlation threshold decreases the number of false alarms
and consequently also the detection rate. On the contrary, we
aim to maximise the detection rate in order to provide an



optimal performance of the correlation filter. The performance
of the correlation filter inherently depends on the applied
template patterns, which are correlated with the measured
patterns. As demonstrated in Figure 2(b), the filter provides
the best performance for appliances with predictable power
consumption patterns. Peculiarly, predictable patterns with
characteristic transients represent optimal template patterns
such as the template pattern of a refrigerator.

VII. CONCLUSION

In this paper we introduced the concept of predictability
to power consumption patterns and presented how correlation
filters can be utilised to detect electrical appliances by means
of their consumption patterns. The presented correlation filters
can be applied by conventional computer systems as well as by
embedded computer systems since they demand low hardware
requirements. The deployment of a such correlation filters
would allow the detection of abnormal appliance behaviour.
Due to ageing, some electrical appliances consume more energy
than a new appliance of the same kind. Such phenomenons
were reported in [16], where a common household device
consumed due to ageing effects three times more energy than
at the time of purchase. A diagnosis system, which utilises
appliance detectors such as the presented correlation filters,
would possibly be able to detect ageing effects and would
suggest the user to replace the respective device. By means
of suggestions like this, such a system assists the owner in
saving costs and in detecting power eaters. Furthermore, the
system would be able to detect the point in time, where an
appliance will require maintenance. Therefore, the presented
correlation filters represent a simple and effective tool for a
wide variety of applications in smart metering.

The performance of the correlation filters was assessed on
the energy consumption data set GREEND. The assessment
was performed on consumption data of single appliances and
on aggregate consumption data such as readings provided by
smart meters. For appliances with predictable features, the
results approved a high performance for consumption data
from single appliances as well as aggregate consumption data.
In contrast to that, the performance of the correlation filters is
significantly worse, which indicates that this kind of filters is
not an appropriate detector for appliances with non-predictable
consumption patterns.

Contemporary research contributions reveal the potentials
of sophisticated machine learning techniques in embedded
systems. In particular, deep neural networks could represent
an alternative to correlation filters for the application as
appliance detectors in low-cost metering infrastructure. A
feasible approach would involve to run the neural networks
on measurement equipment such as smart meters or smart
plugs after being trained on high-performance computing
infrastructure. Future work will compare the performance of
such deep neural networks and the implemented correlation
filters.

Future work will also focus how a diagnosis system could
be implemented by the combination of correlation filters

and artificial intelligence (AI). In particular, the correlation
filters represent simple tools that serve to detect specific
behavioural patterns. This detection can either be used to
identify an appliance or to indicate abnormal behaviour. By
means of machine learning an AI is possibly able to precisely
study the present appliances in the household as well as their
characteristics. Moreover, an AI may serve as cognitive unit
that recognises specific events in the household such as the
arrival of a resident or certain habits. The application of such a
cognitive unit may allow to achieve significant energy savings
by the identification of power eaters, the recognition of ageing
effects of electrical appliances and the need for maintenance.
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